Adama Science and Technology University School of Applied Natural Science Department of Applied Mathematics Applied Mathematics III Math 2021 Assignment II

Submission date April 25, 2023 Maximum mark 10

Instruction: Show all the necessary steps clearly

1. Suppose the mass density at a given point on a thin wire is equal to the square of the distance from that p int to the x axis. If the wire is helical and is parametrized by

$$r(t) = sin(t)i - cos(t)j + 4tk \quad \text{for } \pi \le t \le 2\pi$$

find the mass m of the wire. (1 point)

- 2 Let $F(x, y, z) = (3x^2y + 2yz^2)i + (x^3 + 2xz^2 + 2y)j + (4xyz + 4)k$ and C be any curve from (1, 2, -4) to (5, 0, 2), then
 - (a) Show that F is conservative. (0.5 point)
 - (b) Find potential function. (1 point)
 - (c) Evaluate $\int_C F(r).dr$. (0.5 point)
- 3 Let *u* be continuous with continuous first and second derivatives on a simple closed path *C* and through out the interior *D* of *C*. Show that

$$\int_{C} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy = \int \int_{D} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right) dA.$$

(2 points)

- 4 Find the center of mass of part of paraboloid $z = 16 x^2 y^2$ lying in the first octant between cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$ with density function $\delta(x, y, z) = \frac{xy}{\sqrt{4x^2 + 4y^2 1}}$. (2 points)
- 5 Let Σ consist of the portion of the paraboloid

$$2z = x^2 + v^2$$

below the plane z=x, and orient Σ by the normal directed downward. Suppose a fluid is passing through Σ with a velocity v given by

$$\mathbf{v}(x, y, z) = 2yz\mathbf{i} + 2xz\mathbf{j} + 5y\mathbf{k}.$$

Find the circulation of the fluid around the boundary of Σ . (2 points)

6 Show that $u(x, y) = \frac{1}{2}(x^2 - y^2)$ is harmonic, that is, solution of Laplace equations and find harmonic conjugate v(x, y) of u(x, y). (1 point)